(ADINSERTER AMP)
Monday, September 26, 2022
HomePediatrics DentistryClassification for avian malaria parasite Plasmodium gallinaceum blood stages by using deep...

Classification for avian malaria parasite Plasmodium gallinaceum blood stages by using deep convolutional neural networks


  • Pattaradilokrat, S. et al. Molecular detection of the avian malaria parasite Plasmodium gallinaceum in Thailand. Vet. Parasitol. 210, 1–9. https://doi.org/10.1016/j.vetpar.2015.03.023 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Permin, A. & Juhl, J. The development of Plasmodium gallinaceum infections in chickens following single infections with three different dose levels. Vet. Parasitol. 105, 1–10. https://doi.org/10.1016/s0304-4017(01)00645-8 (2002).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wongsrichanalai, C., Barcus, M. J., Muth, S., Sutamihardja, A. & Wernsdorfer, W. H. A review of malaria diagnostic tools: Microscopy and rapid diagnostic test (RDT). Am. J. Trop. Med. Hyg. 77, 119–127 (2007).

    Article 

    Google Scholar
     

  • Williams, R. B. Avian malaria: Clinical and chemical pathology of Plasmodium gallinaceum in the domesticated fowl Gallus gallus. Avian Pathol. 34, 29–47. https://doi.org/10.1080/03079450400025430 (2005).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Miguel, R. B., Coura, J. R., Samudio, F. & Suarez-Mutis, M. C. Evaluation of three different DNA extraction methods from blood samples collected in dried filter paper in Plasmodium subpatent infections from the Amazon region in Brazil. Rev. Inst. Med. Trop. Sao Paulo. https://doi.org/10.1590/S0036-46652013000300012 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Polley, S. D., Weedall, G. D., Thomas, A. W., Golightly, L. M. & Conway, D. J. Orthologous gene sequences of merozoite surface protein 1 (MSP1) from Plasmodium reichenowi and P. gallinaceum confirm an ancient divergence of P. falciparum alleles. Mol. Biochem. Parasitol. 142, 25–31. https://doi.org/10.1016/j.molbiopara.2005.02.012 (2005).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Polley, S. D. et al. Mitochondrial DNA targets increase sensitivity of malaria detection using loop-mediated isothermal amplification. J. Clin. Microbiol. 48, 2866–2871. https://doi.org/10.1128/JCM.00355-10 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Carin, L. & Pencina, M. J. On deep learning for medical image analysis. JAMA 320, 1192–1193. https://doi.org/10.1001/jama.2018.13316 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, K., Hyun, J., Kim, H., Lim, H. & Myung, H. A deep learning-based automatic mosquito sensing and control system for urban mosquito habitats. Sensors (Basel). https://doi.org/10.3390/s19122785 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, G., Nouaze, J. C., Touko Mbouembe, P. L. & Kim, J. H. YOLO-Tomato: A robust algorithm for tomato detection based on YOLOv3. Sensors (Basel). https://doi.org/10.3390/s20072145 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajaraman, S. et al. Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images. PeerJ 6, e4568. https://doi.org/10.7717/peerj.4568 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, D., Wu, G. & Suk, H. I. Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 19, 221–248. https://doi.org/10.1146/annurev-bioeng-071516-044442 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Unver, H. M. & Ayan, E. Skin lesion segmentation in dermoscopic images with combination of YOLO and GrabCut algorithm. Diagnostics (Basel). https://doi.org/10.3390/diagnostics9030072 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Q. et al. Deep learning approach to peripheral leukocyte recognition. PLoS One 14, e0218808. https://doi.org/10.1371/journal.pone.0218808 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhuang, Z. et al. Cardiac VFM visualization and analysis based on YOLO deep learning model and modified 2D continuity equation. Comput. Med. Imaging Graph. 82, 101732. https://doi.org/10.1016/j.compmedimag.2020.101732 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Kalipsiz, O., Gökçe, E. & Pınar, C. A review of machine learning applications in veterinary field. Kafkas Universitesi Veteriner Fakultesi Dergisi 23, 673–680. https://doi.org/10.9775/kvfd.2016.17281 (2017).

    Article 

    Google Scholar
     

  • Bertram, C. A. et al. Validation of digital microscopy compared with light microscopy for the diagnosis of canine cutaneous tumors. Vet. Pathol. 55, 490–500. https://doi.org/10.1177/0300985818755254 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Awaysheh, A. et al. Review of medical decision support and machine-learning methods. Vet. Pathol. 56, 512–525. https://doi.org/10.1177/0300985819829524 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Ahmed, W. et al. Automatic recognition of fish diseases in fish farms. In 2019 14th International Conference on Computer Engineering and Systems (ICCES) Edition edn 201–206 (IEEE, 2019).

  • Marzahl, C. et al. Deep learning-based quantification of pulmonary hemosiderophages in cytology slides. Sci. Rep. 10, 9795. https://doi.org/10.1038/s41598-020-65958-2 (2020).

    ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Aubreville, M. et al. Deep learning algorithms out-perform veterinary pathologists in detecting the mitotically most active tumor region. Sci. Rep. 10, 16447. https://doi.org/10.1038/s41598-020-73246-2 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Vinicki, K., Ferrari, P., Belic, M. & Turk, R. Using Convolutional Neural Networks for Determining Reticulocyte Percentage in Cats. arXiv:1803.04873. https://ui.adsabs.harvard.edu/abs/2018arXiv180304873V. Accessed 13 Mar 2018.

  • Kaewkamnerd, S. et al. An automatic device for detection and classification of malaria parasite species in thick blood film. BMC Bioinform. 13(Suppl 17), S18–S18. https://doi.org/10.1186/1471-2105-13-S17-S18 (2012).

    Article 

    Google Scholar
     

  • Sheeba, F., Mammen, J. J. & Nagar, A. K. Detection of plasmodium falciparum in peripheral blood smear images. In Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012). Edition edn 289–298 (Springer, 2013).

  • Pamungkas, A., Adi, K. & Gernowo, R. Identification of plasmodium falciparum development phase in malaria infected red blood cells using adaptive color segmentation and decision tree based classification. Int. J. Appl. Eng. Res. 10, 4043–4056 (2015).


    Google Scholar
     

  • Preedanan, W., Phothisonothai, M., Senavongse, W. & Tantisatirapong, S. Automated detection of plasmodium falciparum from Giemsa-stained thin blood films. In 2016 8th International Conference on Knowledge and Smart Technology (KST). 215–218.

  • Gopakumar, G., Swetha, M., Siva, G. S. & Subrahmanyam, G. R. K. S. Automatic detection of Malaria infected RBCs from a focus stack of bright field microscope slide images. In Proceedings of the Tenth Indian Conference on Computer Vision, Graphics and Image Processing. Edition edn Article 16 (Association for Computing Machinery, 2016).

  • Liang, Z. et al. CNN-based image analysis for malaria diagnosis. In 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). 493–496.

  • Haryanto, S. E. V., Mashor, M. Y., Nasir, A. S. A. & Jaafar, H. A fast and accurate detection of Schizont plasmodium falciparum using channel color space segmentation method. In 2017 5th International Conference on Cyber and IT Service Management (CITSM). 1–4.

  • Bibin, D., Nair, M. S. & Punitha, P. Malaria parasite detection from peripheral blood smear images using deep belief networks. IEEE Access 5, 9099–9108 (2017).

    Article 

    Google Scholar
     

  • Hung, J. et al. Applying faster R-CNN for object detection on malaria images. ArXiv abs/1804.09548 (2018).

  • Bhuvan, C., Bansal, S., Gupta, R. & Bhan, A. Computer based diagnosis of malaria in thin blood smears using thresholding based approach. In 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN). 1132–1135.

  • Kalkan, S. C. & Sahingoz, O. K. Deep learning based classification of malaria from slide images. In 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT). 1–4.

  • Shah, D., Kawale, K., Shah, M., Randive, S. & Mapari, R. Malaria parasite detection using deep learning: (Beneficial to humankind). In 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS). 984–988.

  • Fuhad, K. M. F. et al. Deep learning based automatic malaria parasite detection from blood smear and its smartphone based application. Diagnostics (Basel) 10, 329. https://doi.org/10.3390/diagnostics10050329 (2020).

    Article 

    Google Scholar
     

  • Dong, Y. et al. Evaluations of deep convolutional neural networks for automatic identification of malaria infected cells. In 2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI). 101–104.

  • Valkiūnas, G. & Iezhova, T. A. Keys to the avian malaria parasites. Malar. J. 17, 212. https://doi.org/10.1186/s12936-018-2359-5 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vijayalakshmi, A. & Rajesh Kanna, B. Deep learning approach to detect malaria from microscopic images. Multimed. Tools Appl. 79, 15297–15317. https://doi.org/10.1007/s11042-019-7162-y (2020).

    Article 

    Google Scholar
     

  • Yurayart, N., Kaewthamasorn, M. & Tiawsirisup, S. Vector competence of Aedes albopictus (Skuse) and Aedes aegypti (Linnaeus) for Plasmodium gallinaceum infection and transmission. Vet. Parasitol. 241, 20–25. https://doi.org/10.1016/j.vetpar.2017.05.002 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Xuan, M. N. T. et al. Development and application of a novel multiplex PCR assay for the differentiation of four haemosporidian parasites in the chicken Gallus gallus domesticus. Vet. Parasitol. 293, 109431. https://doi.org/10.1016/j.vetpar.2021.109431 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Loey, M., Manogaran, G., Taha, M. H. N. & Khalifa, N. E. M. Fighting against COVID-19: A novel deep learning model based on YOLO-v2 with ResNet-50 for medical face mask detection. Sustain. Cities Soc. 65, 102600. https://doi.org/10.1016/j.scs.2020.102600 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Kittichai, V. et al. Deep learning approaches for challenging species and gender identification of mosquito vectors. Sci. Rep. 11, 4838. https://doi.org/10.1038/s41598-021-84219-4 (2021).

    ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Liu, L. et al. Deep learning for generic object detection: A survey. Int. J. Comput. Vis. 128, 261–318. https://doi.org/10.1007/s11263-019-01247-4 (2020).

    Article 

    Google Scholar
     

  • Nguyen, N. D., Do, T., Ngo, T. D. & Le, D. D. An evaluation of deep learning methods for small object detection. J. Electr. Comput. Eng. 2020, 1–18. https://doi.org/10.1155/2020/3189691 (2020).

    Article 

    Google Scholar
     

  • Joseph, R. & Farhadi, A. Darknet: Open Source Neural Networks in C. http://pjreddie.com/darknet/ (2013–2016). Accessed 10 Jul 2015.

  • Bolei, Z., Aditya, K., Agata, L., Aude, O. & Torralba, A. Learning deep features for discriminative localization. arXiv:1512.04150v1, 1–10 (2015).

  • Christian Matek, S. S., Karsten, S. & Carsten, M. Human-level recognition of blast cells in acute myeloid leukaemia with convolutional neural networks. Nat. Mach. Intell. 1, 538–544 (2019).

    Article 

    Google Scholar
     

  • Jiram, A. I. et al. Evidence of asymptomatic submicroscopic malaria in low transmission areas in Belaga district, Kapit division, Sarawak, Malaysia. Malar. J. 18, 156. https://doi.org/10.1186/s12936-019-2786-y (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raman, J. et al. High levels of imported asymptomatic malaria but limited local transmission in KwaZulu-Natal, a South African malaria-endemic province nearing malaria elimination. Malar. J. 19, 152. https://doi.org/10.1186/s12936-020-03227-3 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778 (2016).

  • Huang, G., Liu, Z. & Weinberger, K. Q. Densely connected convolutional networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2261–2269 (2017).

  • Joseph Redmon, A. F. YOLOv3: An incremental improvement. arXiv:1804.02767 [cs.CV] (2018).

  • Torres, K. et al. Automated microscopy for routine malaria diagnosis: A field comparison on Giemsa-stained blood films in Peru. Malar. J. 17, 339. https://doi.org/10.1186/s12936-018-2493-0 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajaraman, S., Jaeger, S. & Antani, S. K. Performance evaluation of deep neural ensembles toward malaria parasite detection in thin-blood smear images. PeerJ 7, e6977. https://doi.org/10.7717/peerj.6977 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berrar, D. Cross-validation. Encycl. Bioinform. Comput. Biol. 1, 542–545. https://doi.org/10.1016/B978-0-12-809633-8.20349-X (2019).

    Article 

    Google Scholar
     

  • Fuhad, K. M. F. et al. Deep learning based automatic malaria parasite detection from blood smear and its smartphone based application. Diagnostics (Basel). https://doi.org/10.3390/diagnostics10050329 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments