(ADINSERTER AMP)
Friday, September 30, 2022
HomePediatrics DentistryDeep learning-enabled assessment of cardiac allograft rejection from endomyocardial biopsies

Deep learning-enabled assessment of cardiac allograft rejection from endomyocardial biopsies


  • Ziaeian, B. & Fonarow, G. C. Epidemiology and aetiology of heart failure. Nat. Rev. Cardiol. 13, 368–378 (2016).

    Article 

    Google Scholar
     

  • Benjamin, E. J. et al. Heart disease and stroke statistics–2018 update: a report from the American Heart Association. Circulation 137, e67–e492 (2018).

    Article 

    Google Scholar
     

  • Badoe, N. & Shah, P. in Contemporary Heart Transplantation (eds Bogar, L. & Stempien-Otero, A.) 3–12 (Springer, 2020).

  • Orrego, C. M., Cordero-Reyes, A. M., Estep, J. D., Loebe, M. & Torre-Amione, G. Usefulness of routine surveillance endomyocardial biopsy 6 months after heart transplantation. J. Heart Lung Transplant. 31, 845–849 (2012).

    Article 

    Google Scholar
     

  • Lund, L. H. et al. The Registry of the International Society for Heart and Lung Transplantation: thirty-fourth adult heart transplantation report—2017; focus theme: allograft ischemic time. J. Heart Lung Transplant. 36, 1037–1046 (2017).

    Article 

    Google Scholar
     

  • Colvin-Adams, M. & Agnihotri, A. Cardiac allograft vasculopathy: current knowledge and future direction. Clin. Transplant. 25, 175–184 (2011).

    Article 

    Google Scholar
     

  • Kfoury, A. G. et al. Cardiovascular mortality among heart transplant recipients with asymptomatic antibody-mediated or stable mixed cellular and antibody-mediated rejection. J .Heart Lung Transplant. 28, 781–784 (2009).

    Article 

    Google Scholar
     

  • Costanzo, M. R. et al. The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients. J. Heart Lung Transplant. 29, 914–956 (2010).

    Article 

    Google Scholar
     

  • Kobashigawa, J. A. The search for a gold standard to detect rejection in heart transplant patients: are we there yet? Circulation 135, 936–938 (2017).

    Article 

    Google Scholar
     

  • Angelini, A. et al. A web-based pilot study of inter-pathologist reproducibility using the ISHLT 2004 working formulation for biopsy diagnosis of cardiac allograft rejection: the European experience. J. Heart Lung Transplant. 30, 1214–1220 (2011).

    Article 

    Google Scholar
     

  • Crespo-Leiro, M. G. et al. Concordance among pathologists in the second Cardiac Allograft Rejection Gene Expression Observational Study (CARGO II). Transplantation 94, 1172–1177 (2012).

    Article 

    Google Scholar
     

  • Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Bejnordi, B. E. et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318, 2199–2210 (2017).

    Article 

    Google Scholar
     

  • Ouyang, D. et al. Video-based AI for beat-to-beat assessment of cardiac function. Nature 580, 252–256 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Chen, P.-H. C. et al. An augmented reality microscope with real-time artificial intelligence integration for cancer diagnosis. Nat. Med. 25, 1453–1457 (2019).

    CAS 
    Article 

    Google Scholar
     

  • McKinney, S. M. et al. International evaluation of an AI system for breast cancer screening. Nature 577, 89–94 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Lu, M. Y. et al. Data-efficient and weakly supervised computational pathology on whole-slide images. Nat. Biomed. Eng. 5, 555–570 (2021).

    Article 

    Google Scholar
     

  • Campanella, G. et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 25, 1301–1309 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Bulten, W. et al. Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study. Lancet Oncol. 21, 233–241 (2020).

    Article 

    Google Scholar
     

  • Chen, R. J. et al. Pathomic fusion: an integrated framework for fusing histopathology and genomic features for cancer diagnosis and prognosis. IEEE Trans. Med. Imaging https://doi.org/10.1109/TMI.2020.3021387 (2020).

  • Mahmood, F. et al. Deep adversarial training for multi-organ nuclei segmentation in histopathology images. IEEE Trans. Med. Imaging 39, 3257–3267 (2020).

    Article 

    Google Scholar
     

  • Fu, Y. et al. Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis. Nat. Cancer 1, 800–810 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Kather, J. N. et al. Pan-cancer image-based detection of clinically actionable genetic alterations. Nat. Cancer 1, 789–799 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Lu, M. Y. et al. AI-based pathology predicts origins for cancers of unknown primary. Nature 594, 106–110 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Peyster, E. G. et al. An automated computational image analysis pipeline for histological grading of cardiac allograft rejection. Eur. Heart J. 42, 2356–2369 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Tong, L., Hoffman, R., Deshpande, S. R. & Wang, M. D. Predicting heart rejection using histopathological whole-slide imaging and deep neural network with dropout. In 2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI) 1–4 (IEEE, 2017).

  • Nirschl, J. J. et al. A deep-learning classifier identifies patients with clinical heart failure using whole-slide images of H&E tissue. PLoS ONE 13, e0192726 (2018).

    Article 

    Google Scholar
     

  • Peyster, E. G., Madabhushi, A. & Margulies, K. B. Advanced morphologic analysis for diagnosing allograft rejection: the case of cardiac transplant rejection. Transplantation 102, 1230–1239 (2018).

    Article 

    Google Scholar
     

  • Sellaro, T. L. et al. Relationship between magnification and resolution in digital pathology systems. J. Pathol. Inform. 4, 21 (2013).

    Article 

    Google Scholar
     

  • Ilse, M., Tomczak, J. & Welling, M. Attention-based deep multiple instance learning. In Proc. 35th International Conference on Machine Learning (eds Dy, J. & Krause, A.) 2132–2141 (PMLR, 2018).

  • Halloran, P. F. et al. Exploring the cardiac response to injury in heart transplant biopsies. JCI Insight 3, e123674 (2018).

    Article 

    Google Scholar
     

  • Schmauch, B. et al. A deep learning model to predict RNA-seq expression of tumours from whole slide images. Nat. Commun. 11, 3877 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Coudray, N. et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat. Med. 24, 1559–1567 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Karimi, D., Dou, H., Warfield, S. K. & Gholipour, A. Deep learning with noisy labels: exploring techniques and remedies in medical image analysis. Med. Image Anal. 65, 101759 (2020).

    Article 

    Google Scholar
     

  • Mitani, A., Hammel, N. & Liu, Y. Retinal detection of kidney disease and diabetes. Nat. Biomed. Eng. 5, 487–489 (2021).

    Article 

    Google Scholar
     

  • Biscotti, C. V. et al. Assisted primary screening using the automated ThinPrep Imaging System. Am. J. Clin. Pathol. 123, 281–287 (2005).

    Article 

    Google Scholar
     

  • Halloran, P. F. et al. Building a tissue-based molecular diagnostic system in heart transplant rejection: the heart Molecular Microscope Diagnostic (MMDx) System. J. Heart Lung Transplant. 36, 1192–1200 (2017).

    Article 

    Google Scholar
     

  • Duong Van Huyen, J.-P. et al. MicroRNAs as non-invasive biomarkers of heart transplant rejection. Eur. Heart J. 35, 3194–3202 (2014).

    Article 

    Google Scholar
     

  • Giarraputo, A. et al. A changing paradigm in heart transplantation: an integrative approach for invasive and non-invasive allograft rejection monitoring. Biomolecules 11, 201 (2021).

    CAS 
    Article 

    Google Scholar
     

  • De Vlaminck, I. et al. Circulating cell-free DNA enables noninvasive diagnosis of heart transplant rejection. Sci. Transl. Med. 6, 241ra77 (2014).

    Article 

    Google Scholar
     

  • Kennel, P. J. et al. Serum exosomal protein profiling for the non-invasive detection of cardiac allograft rejection. J. Heart Lung Transplant. 37, 409–417 (2018).

    Article 

    Google Scholar
     

  • Anglicheau, D. & Suthanthiran, M. Noninvasive prediction of organ graft rejection and outcome using gene expression patterns. Transplantation 86, 192–199 (2008).

    Article 

    Google Scholar
     

  • Dong, Q., Gong, S. & Zhu, X. Imbalanced deep learning by minority class incremental rectification. IEEE Trans. Pattern Anal. Mach. Intell. 41, 1367–1381 (2019).

    Article 

    Google Scholar
     

  • Matesanz, R., Mahillo, B., Alvarez, M. & Carmona, M. Global observatory and database on donation and transplantation: world overview on transplantation activities. Transplant. Proc. 41, 2297–2301 (2009).

    CAS 
    Article 

    Google Scholar
     

  • He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In 2016 IEEE Conference on ComputerVision and Pattern Recognition (CVPR) 770-778 (2016).

  • Russakovsky, O. et al. ImageNet large scale visual recognition challenge.Int. J. Comput. Vis. 115, 211–252 (2015).

  • Tan, M. & Le, Q. V. EfficientNet: rethinking model scaling for convolutional neural networks. In Proc. 36th International Conference on Machine Learning (eds Chaudhuri, K. & Salakhutdinov, R.) 6105–6114 (PMLR, 2019).

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments