(ADINSERTER AMP)
Thursday, September 29, 2022
HomePediatrics DentistryA promising deep learning-assistive algorithm for histopathological screening of colorectal cancer

A promising deep learning-assistive algorithm for histopathological screening of colorectal cancer


  • Srinidhi, C. L., Ciga, O. & Martel, A. L. Deep neural network models for computational histopathology: A survey. Med Image Anal. 67, 101813. https://doi.org/10.1016/j.media.2020.101813 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Pinckaers, H. & Litjens, G. Neural ordinary differential equations for semantic segmentation of individual colon glands. arXiv:1910.10470 (2019) (NeurIPS).

  • Pathology MeSH Descriptor Data 2021. D010336.

  • Kather, J. N. et al. Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study. PLoS Med. 16(1), 1–22. https://doi.org/10.1371/journal.pmed.1002730 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Iizuka, O. et al. Deep learning models for histopathological classification of gastric and colonic epithelial tumours. Sci. Rep. 10(1), 1–11. https://doi.org/10.1038/s41598-020-58467-9 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Mukhopadhyay, S. et al. Whole slide imaging versus microscopy for primary diagnosis in surgical pathology. Am. J. Surg. Pathol. 42, 39–52 (2018).

    Article 

    Google Scholar
     

  • Kainz, P., Pfeiffer, M. & Urschler, M. Segmentation and classification of colon glands with deep convolutional neural networks and total variation regularization. PeerJ 2017(10), 1–28. https://doi.org/10.7717/peerj.3874 (2017).

    Article 

    Google Scholar
     

  • Malik, J. et al. Colorectal cancer diagnosis from histology images: A comparative study. arXiv. Published online March 26, 2019:1–12. Accessed 28 February 2021. arXiv:1903.11210.

  • Lui, T. K. L., Guo, C. G. & Leung, W. K. Accuracy of artificial intelligence on histology prediction and detection of colorectal polyps: A systematic review and meta-analysis. Gastrointest. Endosc. 92(1), 11-22.e6. https://doi.org/10.1016/j.gie.2020.02.033 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Dembrower, K. et al. Effect of artificial intelligence-based triaging of breast cancer screening mammograms on cancer detection and radiologist workload: A retrospective simulation study. Lancet Digit. Health 2(9), e468–e474. https://doi.org/10.1016/S2589-7500(20)30185-0 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Barisoni, L., Lafata, K. J., Hewitt, S. M., Madabhushi, A. & Balis, U. G. J. Digital pathology and computational image analysis in nephropathology. Nat. Rev. Nephrol. 16(11), 669–685. https://doi.org/10.1038/s41581-020-0321-6 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Campanella, G. et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 25(8), 1301–1309. https://doi.org/10.1038/s41591-019-0508-1 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68(6), 394–424. https://doi.org/10.3322/caac.21492 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Safiri, S. et al. The global, regional, and national burden of colorectal cancer and its attributable risk factors in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 4(12), 913–933. https://doi.org/10.1016/S2468-1253(19)30345-0 (2019).

    Article 

    Google Scholar
     

  • Morarasu, S., Haroon, M., Morarasu, B. C., Lal, K. & Eguare, E. Colon biopsies: Benefit or burden?. J. Med. Life 12(2), 156–159. https://doi.org/10.25122/jml-2019-0009 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rakha, E. A. et al. Current and future applications of artificial intelligence in pathology: A clinical perspective. J. Clin. Pathol. 74(figure 1), 1–6. https://doi.org/10.1136/jclinpath-2020-206908 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Cui, M. & Zhang, D. Y. Artificial intelligence and computational pathology. Lab. Investig. https://doi.org/10.1038/s41374-020-00514-0 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Sharma, S. & Seth, U. Artificial intelligence in colonscopy. J. Pract. Cardiovasc. Sci. 3(3), 158. https://doi.org/10.4103/jpcs.jpcs_2_18 (2017).

    Article 

    Google Scholar
     

  • Luo, Y. et al. Artificial intelligence-assisted colonoscopy for detection of colon polyps: A prospective, randomized cohort study. J. Gastrointest. Surg. https://doi.org/10.1007/s11605-020-04802-4 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Attardo, S. et al. Artificial intelligence technologies for the detection of colorectal lesions: The future is now. World J. Gastroenterol. 26(37), 5606–5616. https://doi.org/10.3748/wjg.v26.i37.5606 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hassan, C. et al. Performance of artificial intelligence in colonoscopy for adenoma and polyp detection: A systematic review and meta-analysis. Gastrointest. Endosc. 93(1), 77–85.e6. https://doi.org/10.1016/j.gie.2020.06.059 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Attardo, S. et al. World Journal of Gastroenterology Artificial intelligence technologies for the detection of colorectal lesions: The future is now. World J. Gastroenterol. 26(37), 5606–5616. https://doi.org/10.3748/wjg.v26.i37.5606 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hassan, C., Pickhardt, P. J. & Rex, D. K. A resect and discard strategy would improve cost-effectiveness of colorectal cancer screening. Clin. Gastroenterol. Hepatol. 8(10), 865–869.e3. https://doi.org/10.1016/j.cgh.2010.05.018 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • East, J. E. et al. Advanced endoscopic imaging: European Society of Gastrointestinal Endoscopy (ESGE) Technology Review. Endoscopy 48(11), 1029–1045. https://doi.org/10.1055/s-0042-118087 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Zhao, Z. Q., Zheng, P., Xu, S. T. & Wu, X. Object detection with deep learning: A review. IEEE Trans. Neural Netw. Learn Syst. 30(11), 3212–3232. https://doi.org/10.1109/TNNLS.2018.2876865 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, Y. & Chung, A. C. S. Evidence localization for pathology images using weakly supervised learning. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) LNCS, Vol. 11764, 613–621. https://doi.org/10.1007/978-3-030-32239-7_68 (2019).

  • Madabhushi, A. & Lee, G. Image analysis and machine learning in digital pathology: Challenges and opportunities. Med. Image Anal. 33, 170–175. https://doi.org/10.1016/j.media.2016.06.037 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arvaniti, E. et al. Automated Gleason grading of prostate cancer tissue microarrays via deep learning. Sci. Rep. 8(1), 12054. https://doi.org/10.1038/s41598-018-30535-1 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cross, S., Furness, P., Igali, L., Snead, D. & Treanor, D. Best practice recommendations for implementing digital pathology. R. Coll. Pathol. Published online 3–5. https://www.rcpath.org/uploads/assets/f465d1b3-797b-4297-b7fedc00b4d77e51/Best-practice-recommendations-for-implementing-digital-pathology.pdf (2018).

  • Steiner, D. F. et al. Impact of deep learning assistance on the histopathologic review of lymph nodes for metastatic breast cancer. Am. J. Surg. Pathol. 42(12), 1636–1646. https://doi.org/10.1097/PAS.0000000000001151 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stenzinger, A. et al. Artificial intelligence and pathology: From principles to practice and future applications in histomorphology and molecular profiling. Semin. Cancer Biol. https://doi.org/10.1016/j.semcancer.2021.02.011 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, S. et al. Comprehensive analysis of lung cancer pathology images to discover tumor shape and boundary features that predict survival outcome. Sci. Rep. 8(1), 1–9. https://doi.org/10.1038/s41598-018-27707-4 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Gurcan, M. N. et al. Histopathological image analysis: A review. IEEE Rev. Biomed. Eng. 2, 147–171. https://doi.org/10.1109/RBME.2009.2034865 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Y. et al. Gland instance segmentation using deep multichannel neural networks. IEEE Trans. Biomed. Eng. 64(12), 2901–2912. https://doi.org/10.1109/TBME.2017.2686418 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Raza, S. E. A. et al. MIMONet: Gland segmentation using multi-input–multi-output convolutional neural network. In Communications in Computer and Information Science, Vol. 723, 698–706 (Springer, 2017). https://doi.org/10.1007/978-3-319-60964-5_61.

  • Xiao, W. T., Chang, L. J. & Liu, W. M. Semantic segmentation of colorectal polyps with DeepLab and LSTM networks. In 2018 IEEE International Conference on Consumer Electronics-Taiwan, ICCE-TW 2018 (Institute of Electrical and Electronics Engineers Inc., 2018). https://doi.org/10.1109/ICCE-China.2018.8448568.

  • Tang, J., Li, J. & Xu, X. Segnet-based gland segmentation from colon cancer histology images. In Proceedings—2018 33rd Youth Academic Annual Conference of Chinese Association of Automation, YAC 2018 1078–1082 (Institute of Electrical and Electronics Engineers Inc., 2018). https://doi.org/10.1109/YAC.2018.8406531.

  • Louis, D. N. et al. The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. 3, 803–820. https://doi.org/10.1007/s00401-016-1545-1 (2016).

    Article 

    Google Scholar
     

  • Korbar, B. et al. Looking under the hood: Deep neural network visualization to interpret whole-slide image analysis outcomes for colorectal polyps. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition Work 2017-July, 821–827. https://doi.org/10.1109/CVPRW.2017.114 (2017).

  • Lin, H. et al. Fast ScanNet: Fast and dense analysis of multi-gigapixel whole-slide images for cancer metastasis detection. IEEE Trans. Med. Imaging 38(8), 1948–1958. https://doi.org/10.1109/TMI.2019.2891305 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Lin, H. et al. ScanNet: A fast and dense scanning framework for metastastic breast cancer detection from whole-slide image. In Proceedings—2018 IEEE Winter Conference on Applications of Computer Vision, WACV 2018. Vol. 2018-January, 539–546 (Institute of Electrical and Electronics Engineers Inc., 2018). https://doi.org/10.1109/WACV.2018.00065.

  • Guo, Z. et al. A fast and refined cancer regions segmentation framework in whole-slide breast pathological images. Sci. Rep. 9(1), 1–10. https://doi.org/10.1038/s41598-018-37492-9 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Chen, P. J. et al. Accurate classification of diminutive colorectal polyps using computer-aided analysis. Gastroenterology 154(3), 568–575. https://doi.org/10.1053/j.gastro.2017.10.010 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Ho, D. J. et al. Deep multi-magnification networks for multi-class breast cancer image segmentation. Comput. Med. Imaging Graph. 88, 1–35. https://doi.org/10.1016/j.compmedimag.2021.101866 (2021).

    Article 

    Google Scholar
     

  • Macenko, M. et al. A method for normalizing histology slides for quantitative analysis. In Proceedings—2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2009 1107–1110. https://doi.org/10.1109/ISBI.2009.5193250 (2009).

  • Vahadane, A. et al. Structure-preserving color normalization and sparse stain separation for histological images. IEEE Trans. Med. Imaging 35(8), 1962–1971. https://doi.org/10.1109/TMI.2016.2529665 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Bejnordi, B. E. et al. Stain specific standardization of whole-slide histopathological images. IEEE Trans. Med. Imaging 35(2), 404–415. https://doi.org/10.1109/TMI.2015.2476509 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Cho, H., Lim, S., Choi, G. & Min, H. Neural stain-style transfer learning using GAN for histopathological images (2003) 1–10. arXiv:1710.08543 (2017).

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments