(ADINSERTER AMP)
Thursday, October 6, 2022
HomePediatrics DentistryAssessment of deep learning assistance for the pathological diagnosis of gastric cancer

Assessment of deep learning assistance for the pathological diagnosis of gastric cancer


  • Siegel, R. L. & MillerA, K. D. Cancer statistics, 2019. CA Cancer J. Clin. 69, 7–34 (2019).

    Article 

    Google Scholar
     

  • Chen, W., Zheng, R., Baade, P. D., Zhang, S., Zeng, H. & Bray, F. et al. Cancer statistics in China, 2015. CA Cancer J. Clin. 66, 115–132 (2016).

    Article 

    Google Scholar
     

  • Smyth, E. C., Nilsson, M., Grabsch, H. I. & van Grieken, F. N. C. Lordick. Gastric cancer. Lancet 396, 635–648 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Adesina, A., Chumba, D., Nelson, A. M., Orem, J., Roberts, D. J. & Wabinga, H. et al. Improvement of pathology in sub-Saharan Africa. Lancet Oncol. 14, e152–157 (2013).

    Article 

    Google Scholar
     

  • Xu, C., Li, Y. & Chen, P. A survey on the attitudes of Chinese medical students towards current pathology education. BMC Med. Educ. 20, 259 (2020).

    Article 

    Google Scholar
     

  • Metter, D. M., Colgan, T. J. & Leung, S. T. Trends in the US and Canadian Pathologist Workforces From 2007 to 2017. JAMA Netw. Open 2, e194337 (2019).

    Article 

    Google Scholar
     

  • Robboy, S. J., Weintraub, S., Horvath, A. E., Jensen, B. W., Alexander, C. B. & Fody, E. P. et al. Pathologist workforce in the United States: I. Development of a predictive model to examine factors influencing supply. Arch. Pathol. Lab. Med. 137, 1723–1732 (2013).

    Article 

    Google Scholar
     

  • Ehteshami Bejnordi, B., Veta, M., Johannes van Diest, P., van Ginneken, B., Karssemeijer, N. & Litjens, G. et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318, 2199–2210 (2017).

    Article 

    Google Scholar
     

  • Cruz-Roa, A., Gilmore, H., Basavanhally, A., Feldman, M., Ganesan, S. & Shih, N. N. C. et al. Accurate and reproducible invasive breast cancer detection in whole-slide images: a deep learning approach for quantifying tumor extent. Sci. Rep. 7, 46450 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Topol, E. J. High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 25, 44–56 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Kather, J. N., Pearson, A. T., Halama, N., Jager, D., Krause, J. & Loosen, S. H. et al. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat. Med. 25, 1054–1056 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Yu, K. H., Zhang, C., Berry, G. J., Altman, R. B., Re, C. & Rubin, D. L. et al. Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat. Commun. 7, 12474 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Arvaniti, E., Fricker, K. S., Moret, M., Rupp, N., Hermanns, T. & Fankhauser, C. et al. Automated Gleason grading of prostate cancer tissue microarrays via deep learning. Sci. Rep. 8, 12054 (2018).

    Article 

    Google Scholar
     

  • Raciti, P., Sue, J., Ceballos, R., Godrich, R., Kunz, J. D. & Kapur, S. et al. Novel artificial intelligence system increases the detection of prostate cancer in whole slide images of core needle biopsies. Mod. Pathol. 33, 2058–2066 (2020).

    Article 

    Google Scholar
     

  • Courtiol, P., Maussion, C., Moarii, M., Pronier, E., Pilcer, S. & Sefta, M. et al. Deep learning-based classification of mesothelioma improves prediction of patient outcome. Nat. Med. 25, 1519–1525 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Campanella, G., Hanna, M. G., Geneslaw, L., Miraflor, A., Werneck Krauss Silva, V. & Busam, K. J. et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 25, 1301–1309 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Song, Z., Zou, S., Zhou, W., Huang, Y., Shao, L. & Yuan, J. et al. Clinically applicable histopathological diagnosis system for gastric cancer detection using deep learning. Nat. Commun. 11, 4294 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Hanna, M. G., Ardon, O., Reuter, V. E., Sirintrapun, S. J., England, C. & Klimstra, D. S. et al. Integrating digital pathology into clinical practice. Mod. Pathol. 35, 152–164 (2021).

    Article 

    Google Scholar
     

  • Ba, W., Wang, R., Yin, G., Song, Z., Zou, J. & Zhong, C. et al. Diagnostic assessment of deep learning for melanocytic lesions using whole-slide pathological images. Transl. Oncol. 14, 101161 (2021).

    Article 

    Google Scholar
     

  • Hekler, A., Utikal, J. S., Enk, A. H., Berking, C., Klode, J. & Schadendorf, D. et al. Pathologist-level classification of histopathological melanoma images with deep neural networks. Eur. J. Cancer 115, 79–83 (2019).

    Article 

    Google Scholar
     

  • Strom, P., Kartasalo, K., Olsson, H., Solorzano, L., Delahunt, B. & Berney, D. M. et al. Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study. Lancet Oncol. 21, 222–232 (2020).

    Article 

    Google Scholar
     

  • Fenstermaker, M., Tomlins, S. A. & Singh, K. Development and validation of a deep-learning model to assist with renal cell carcinoma histopathologic interpretation. Urology 144, 152–157 (2020).

    Article 

    Google Scholar
     

  • Niazi, M. K. K. Digital pathology and artificial intelligence. Lancet Oncol. 20, e253–e261 (2019).

    Article 

    Google Scholar
     

  • KeaneE, P. A. & Topol, J. With an eye to AI and autonomous diagnosis. NPJ Digit. Med. 1, 40 (2018).

    Article 

    Google Scholar
     

  • Kermany, D. S., Goldbaum, M., Cai, W., Valentim, C. C. S., Liang, H. & Baxter, S. L. et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172, 1122–1131.e1129 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Rose, S. Machine learning for prediction in electronic health data. JAMA Netw. Open 1, e181404 (2018).

    Article 

    Google Scholar
     

  • Kim, J. M., Sohn, J. H., Cho, M. Y., Kim, W. H., Chang, H. K. & Jung, E. S. et al. Inter-observer reproducibility in the pathologic diagnosis of gastric intraepithelial neoplasia and early carcinoma in endoscopic submucosal dissection specimens: a multi-center study. Cancer Res. Treat. 51, 1568–1577 (2019).

    Article 

    Google Scholar
     

  • Falck, V. G. & Novelli, M. R. Gastric dysplasia: inter-observer variation, sulphomucin staining and nucleolar organizer region counting. Histopathology 16, 141–149 (1990).

    CAS 
    Article 

    Google Scholar
     

  • Mills, A. M., Gradecki, S. E., Horton, B. J., Blackwell, R., Moskaluk, C. A. & Mandell, J. W. et al. Diagnostic efficiency in digital pathology: a comparison of optical versus digital assessment in 510 surgical pathology cases. Am. J. Surg. Pathol. 42, 53–59 (2018).

    Article 

    Google Scholar
     

  • Steiner, D. F., MacDonald, R., Liu, Y., Truszkowski, P., Hipp, J. D. & Gammage, C. et al. Impact of deep learning assistance on the histopathologic review of lymph nodes for metastatic breast cancer. Am. J. Surg. Pathol. 42, 1636–1646 (2018).

    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments