Monday, September 26, 2022
HomePediatrics DentistryArtificial intelligence system shows performance at the level of uropathologists for the...

Artificial intelligence system shows performance at the level of uropathologists for the detection and grading of prostate cancer in core needle biopsy: an independent external validation study

  • Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. Cancer. J. Clin. 71, 209–249 (2021).

  • Epstein, J. I. An update of the Gleason grading system. J. Urol. 183, 433–440 (2010).

  • Allsbrook Jr., W. C., Mangold, K. A., Johnson, M. H., Lane, R. B., Lane, C. G. & Epstein, J. I. Interobserver reproducibility of Gleason grading of prostatic carcinoma: general pathologist. Hum. Pathol. 32, 81–88 (2001).

  • van Leenders, G., van der Kwast, T. H., Grignon, D. J., Evans, A. J., Kristiansen, G., Kweldam, C. F. et al. The 2019 International Society of Urological Pathology (ISUP) consensus conference on grading of prostatic carcinoma. Am. J. Surg. Pathol. 44, e87–e99 (2020).

  • Litjens, G., Sanchez, C. I., Timofeeva, N., Hermsen, M., Nagtegaal, I., Kovacs, I. et al. Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci. Rep. 6, 26286 (2016).

  • Campanella, G., Hanna, M. G., Geneslaw, L., Miraflor, A., Werneck Krauss Silva, V., Busam, K. J. et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 25, 1301–1309 (2019).

  • Strom, P., Kartasalo, K., Olsson, H., Solorzano, L., Delahunt, B., Berney, D. M. et al. Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study. Lancet. Oncol. 21, 222–232 (2020).

  • Ryu, H. S., Jin, M. S., Park, J. H., Lee, S., Cho, J., Oh, S. et al. Automated gleason scoring and tumor quantification in prostate core needle biopsy images using deep neural networks and its comparison with pathologist-based assessment. Cancers 11, 1860 (2019).

  • Humphrey, P. A., Moch, H., Cubilla, A. L., Ulbright, T. M. & Reuter, V. E. The 2016 WHO classification of tumours of the urinary system and male genital organs-Part B: prostate and bladder tumours. Eur. Urol. 70, 106–119 (2016).

  • Hajian-Tilaki, K. Sample size estimation in diagnostic test studies of biomedical informatics. J. Biomed. Inform. 48, 193–204 (2014).

  • Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20, 37–46 (1960).

  • Srigley, J. R., Delahunt, B., Samaratunga, H., Billis, A., Cheng, L., Clouston, D. et al. Controversial issues in Gleason and International Society of Urological Pathology (ISUP) prostate cancer grading: proposed recommendations for international implementation. Pathology 51, 463–473 (2019).

  • Montironi, R., Scattoni, V., Mazzucchelli, R., Lopez-Beltran, A., Bostwick, D. G. & Montorsi, F. Atypical foci suspicious but not diagnostic of malignancy in prostate needle biopsies (also referred to as “atypical small acinar proliferation suspicious for but not diagnostic of malignancy”). Eur. Urol. 50, 666–674 (2006).

  • Amin, M. B., Lin, D. W., Gore, J. L., Srigley, J. R., Samaratunga, H., Egevad, L. et al. The critical role of the pathologist in determining eligibility for active surveillance as a management option in patients with prostate cancer: consensus statement with recommendations supported by the College of American Pathologists, International Society of Urological Pathology, Association of Directors of Anatomic and Surgical Pathology, the New Zealand Society of Pathologists, and the Prostate Cancer Foundation. Arch. Pathol. Lab. Med. 138, 1387–1405 (2014).

  • Pantanowitz, L., Quiroga-Garza, G. M., Bien, L., Heled, R., Laifenfeld, D., Linhart, C. et al. An artificial intelligence algorithm for prostate cancer diagnosis in whole slide images of core needle biopsies: a blinded clinical validation and deployment study. Lancet Digit. Health 2, e407–e416 (2020).

  • Nagpal, K., Foote, D., Tan, F., Liu, Y., Chen, P. C., Steiner, D. F. et al. Development and validation of a deep learning algorithm for Gleason grading of prostate cancer from biopsy specimens. JAMA Oncol. 6, 1372–1380 (2020).

  • Bulten, W., Pinckaers, H., van Boven, H., Vink, R., de Bel, T., van Ginneken, B. et al. Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study. Lancet Oncol. 21, 233–241 (2020).

  • Mun, Y., Paik, I., Shin, S. J., Kwak, T. Y. & Chang, H. Yet another automated Gleason grading system (YAAGGS) by weakly supervised deep learning. NPJ Digit. Med. 4, 99 (2021).


    Google Scholar

  • Chen, R. C., Rumble, R. B. & Jain, S. Active surveillance for the management of localized prostate cancer (Cancer Care Ontario guideline): American Society of Clinical Oncology clinical practice guideline endorsement summary. J. Oncol. Pract. 12, 267–269 (2016).

  • Buyyounouski, M. K., Choyke, P. L., McKenney, J. K., Sartor, O., Sandler, H. M., Amin, M. B. et al. Prostate cancer—major changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J. Clin. 67, 245–253 (2017).

  • Mohler, J. L., Antonarakis, E. S., Armstrong, A. J., D’Amico, A. V., Davis, B. J., Dorff, T. et al. Prostate cancer, version 2.2019, NCCN clinical practice guidelines in oncology. J. Natl Compr. Canc. Netw. 17, 479–505 (2019).

  • Bulten, W., Balkenhol, M., Belinga, J. A., Brilhante, A., Cakir, A., Egevad, L. et al. Artificial intelligence assistance significantly improves Gleason grading of prostate biopsies by pathologists. Mod. Pathol. 34, 660–671 (2021).

  • Steiner, D. F., Nagpal, K., Sayres, R., Foote, D. J., Wedin, B. D., Pearce, A. et al. Evaluation of the use of combined artificial intelligence and pathologist assessment to review and grade prostate biopsies. JAMA Netw. Open 3, e2023267 (2020).

  • Raciti, P., Sue, J., Ceballos, R., Godrich, R., Kunz, J. D., Kapur, S. et al. Novel artificial intelligence system increases the detection of prostate cancer in whole slide images of core needle biopsies. Mod. Pathol. 33, 2058–2066 (2020).

  • Robboy, S. J., Weintraub, S., Horvath, A. E., Jensen, B. W., Alexander, C. B., Fody, E. P. et al. Pathologist workforce in the United States: I. Development of a predictive model to examine factors influencing supply. Arch. Pathol. Lab. Med. 137, 1723–1732 (2013).

  • Kartasalo, K., Bulten, W., Delahunt, B., Chen, P. C., Pinckaers, H., Olsson, H. et al. Artificial intelligence for diagnosis and Gleason grading of prostate cancer in biopsies-current status and next steps. Eur. Urol. Focus 7, 687–691 (2021).



    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments